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Abstract—A general series solution to the problem of interacting circular inclusions in plane
thermoelasticity is provided in this paper. Based upon the complex variable theory and the use of
Laurent series expansion, the general expression of the stress functions is derived explicitly for the
circular inclusion problem under remote uniform heat flow. By applying the use of the superposition,
the problem dealing with any number of arbitrarily located inclusions can be then reduced to a set
of linear algebraic equations which are solved with the aid of a perturbation technique. For
illustrating the use of the present approach, an approximate closed form solution of the stress
functions is derived explicitly for the problem containing two arbitrarily located inclusions. Numeri-
cal results of the interfacial stresses around a rigid circular inclusion or hoop stress along a circular
hole due to the presence of an elastic inclusion are provided to demonstrate the dependence of the
solution upon the pertinent parameters. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Studies on interacting inclusions or inhomogeneities in composite materials have been a
topic of considerable research. For example, determination of the stress fields induced by
an infinite number of periodically or randomly distributed inclusions has been obtained by
Hashin (1983), Willis (1983) and Isida and Igawa (1991). The elasticity problems associated
with a finite number of arbitrarily located inclusions were considered by Moschovidis and
Mura (1975), Tandon and Weng (1986), Rodin and Hwang (1991) and Gong and Meguid
(1993). The elastic field for two circular inclusions in antiplane elastostatics has been solved
by Goree and Wilson (1967), Budiansky and Carrier (1984), Steif (1989) and Honein et al.
(1992). All the afore-mentioned studies have concentrated on multiple inclusion problems
under isothermal loading conditions. Now a challenging problem is to find the stress field
of the current problem of arbitrarily located inclusions subjected to thermal loadings. This
problem, to the authors’ knowledge, has not been considered in the literature.

The problem associated with one single inclusion perfectly bonded to an infinite matrix
subjected to arbitrary thermal loadings was recently solved by Chao and Shen (1995). The
general exact solutions of the thermal stress field in both the inclusion and the surrounding
matrix are obtained by using the method of analytical continuation. However, the above-
mentioned methodology cannot be directly used to solve the present problem of multiple
inclusions with two or more separate interfaces that a closed-form solution is impossible to
achieve. In this paper, both the complex variable theory and the Laurent series expansion
[Isida (1973) ; Gong and Meguid (1993)] will be used to derive the general expressions of
the complex potentials which satisfy the prescribed continuity conditions for each circular
inclusion. For studying the interaction effects among the inclusions, the superposition
principle is applied to reduce the problem to a set of linear algebraic equations. Special
examples of two circular inclusions embedded in an infinite matrix under remote uniform
heat flow are given to illustrate the use of the present approach. By using a perturbation
technique, an approximate closed-form solution up to the fourth order of the stress func-
tions in the matrix is presented explicitly. For a limiting case when two circular inclusions
are sufficiently apart, the zero-order solution of the stress functions derived in this work is
shown to coincide exactly with the result of the corresponding single inclusion problem.
Numerical examples concerned with either a circular hole or a rigid circular inclusion
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interacted with an elastic inclusion are provided to demonstrate the dependence of the
normalized hoop stress or interfacial stresses upon the material parameters and the relative
position of the inclusion. The results presented here will be helpful in understanding the
thermoelastic interaction behavior when two circular inclusions become close to each other.

2. PROBLEM FORMULATION

For two-dimensional steady-state heat conduction problems, the temperature T and
the total heat flow Q can be given in terms of an analytic function g’(z) of a complex
variable z = x + iy, namely

T =Relg'(2)] (M
Q= —kim[g'(2)] @

where £ is the heat conductivity and Re and Im stand for the real part and imaginary part
of the argument, respectively. The components of the displacement and traction force, in
two-dimensional theory of thermoelasticity, can be expressed in terms of two stress functions
¢(2), ¥(z) and a temperature function g’(z) as

2u(utivy = kd(2) —2¢"(2) — ¥ (2) +2#ﬂjg'(2) dz 3

—Y+iX =) +26 () + ¥ () @
where u is the shear modulus and

I—v
K= P

for plane stress and k = 3—4v, § = (1 + v)a for plane strain with v being the Poisson’s ratio
and x the thermal expansion coefficient. Primes denote differentiation with respect to z and
a superimposed bar denotes the complex conjugate. Consider an array of circular inclusions,
of arbitrary radii g, and of different shear moduli y, and heat conductivities k;, perfectly
bonded to a matrix, of infinite extent and of shear modulus u and heat conductivity k,
subjected to remote uniform heat flux g, (see Fig. 1). We now seek the solution of the
circular inclusion problem as the form

Fig. 1. Circular inclusions in an isotropic thermoelastic medium.
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If the matrix and the circular inclusions are assumed to be perfectly bonded along the
interface z, = a,¢", both the continuity conditions 7 = T, and Q = Q, across the interface
lead to

o

1 1 = 1 ,— 1 - ), — 1 S - 1 1
Z {Cn‘ja;l+ Z'6+ +C,,Ja}-'+ z; (n+ )+Dn,1'a/ (n+ )Z0 (n+ ’+Dn,jaj (n+ )Zz(x)+ }
n=0

8

= {E")}a;wlzbwl+EnJa;g+lza(n+l)} (16)
0

n

and

k{cnlja}t+lzg+l _C-an7+lZ()—(n+ 1) _+_D”J_aj—(n+1)2(—)—(n+])_D-"‘]_aj_—(n+l)zg+l}

=
1018

=) k{E, @t &t —E at g (1)
n=0

where z, is represented as e,

By comparing the coefficients of each power of z,, the explicit relations among the
coefficients are obtained as

k—k; ) =
Dus = e, & G 18)
J
2k
_ . 1
En,/ k+k, Cn,/ ( 9)

Equations (14)—(15) and eqns (18)—(19) constitute the general expressions of the complex
potentials in the thermal field which automatically satisfy the continuity conditions for each
circular inclusion. The only remaining unknown constant C,; or D,; will be determined
once the specific geometry and loading conditions of the problem are given. Consider two
arbitrarily located inclusions in an infinite matrix under remoted uniform heat flux (see
Fig. 2). Let (x;,y;) and (r;,0,) denote the rectangular Cartesian and polar coordinate
systems with their origin O, at the center of the jth inclusion. The quantity d, denotes the
distance between the jth inclusion and the kth inclusion while @, stands for the inclination
angle measured from the x-axis to the O,0,. For an arbitrary array of ¥ circular inclusions

Fig. 2. Two arbitrarily located inclusions in an infinite matrix.
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$(z) = Alogz,+*(z) 5)
Y(z) = Blogz,+y*(z)) (6)
in the matrix and
$:(z) = HXz) %)
Vi(z) = U1z ()

in circular inclusions.

Since no singularities are assumed to reside inside or on the boundary of the inclusion,
¢*(z)), ¥*(z;) and @}z;), ¥¥(z,) can be, respectively, expanded into Laurent series and
Taylor series as follows

e

#*z) = T M,z 4z ) ©)
¥*(z) = Zo [K,jz 7+ Sz " Y] (10)
and
ONz) =Y H.,z*', yXz)= Y L,z (11)
n=90 n=0

It should be noted that the singular term log z; appearing in eqns (5) and (6) results from
the requirement of single-valued conditions applying each circular inclusion. The constants
A, B must satisfy the following equations [Chao and Shen (1995)]

5 —2up.

kA+ B =——"—lg(z), (12)
o ,

A~B=%[(—Y+1X)L, (13)

where [f(z)]., denotes the jump in f(z) for a contour c,. The remaining unknown constants
appeared in eqns (9)—(11) may be determined from the interface continuity conditions.

3. COMPLEX POTENTIALS IN THERMAL FIELD

Since no singularities are assumed to reside inside or on the boundary of the inclusion,
the temperature functions can be, respectively, represented as

gz) =3 [Czi" ' + D,z """ (14)
n=20
in the matrix and
giz)= ) E,z* (15)
n=0

in the circular inclusion.
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located in an infinite matrix under remote uniform heat flux, the temperature function in
the matrix can be put in the form

N x
g@) =1+ 3 ¥ Dpzi ™V (20)

k=1n=0

where 1 = —gp/k. It should be noted that eqn (20) already satisfies the condition applied
at infinity and the continuity conditions along the inclusion boundaries. After having the
relation between the jth and the kth inclusion coordinates, i.e.

Zy =Z)-_d]keiw’k (2])

Equation (20) can be rearranged as the form

x€*

gz) =Y [Coyzi™ +Dyyz; "] (22)

n=

where

N
DI AT (23)

O k+#j

natE

(1U =:Te_wéﬂn{—

4

with J,, being the Kronerker delta and

o4 (=1)y*! (n+p+1

il U )e) (24)
i

By substituting eqn (18) into eqn (23), the unknown constant D,; could be obtained and
the thermal problem associated with N circular inclusions is thus solved.

4. COMPLEX POTENTIALS IN PLANE THERMOELASTICITY

By integrating the temperature function from eqn (22) and knowing that no resultant
force is applied on any contour ¢, the constants 4 and B in eqns (12) and (13) yield the
following results [Chao and Shen (1995)]

_ —2uBD,, B= —2#I3150J

4= 25
1+x 1+x (25)
The stress functions in the matrix and in the inclusion, respectively, now become
—2upD,, z . i,
o(z) = ‘l_ﬁc—%logzﬂ- ZO [Mw.z}.+1 +F,;z; ( +1)] (26)
—2uBDy, x
Vi) = *ly-{%&bg Lt ZO (Knyzi ™+ 8,27 1] 27

and
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oo

¢z) = Y HyZt' Y(z) = Z Lzt (28)

n=0

If the circular inclusions and the matrix are assumed to be perfectly bonded along the
interface, the displacements and surface tractions at the interface must be continuous.
By using the general solutions (26)—(28), both the traction and displacement continuity
conditions lead to

o

z {M an+lzn+l+F a—(n+1)z (n+1)+A +(n+l)M’Lja;x+lzo-n+]

_(n+])FnJaj—(n+l)28+3 +[Zn,fa?+lzo—1n+l)+§n‘/aj—(n+l)zzé+l}

— Z {Hn‘/a7+lzr(t)+l+(n+l)ﬁ” A+ 1 —n+1+E an+l A(n+l)} (29)
n=0

Z {1- [K n+l n+1+KF a (n+l)Z—(n+l) __(n_+_1)Mnlan+l —n+1

—{n+1)n+3 4 +1,—(n+1) S+ on+i
+(n+1)Fn,ja/ T — KAt 2 =S,a; "zt

1

1
+2ﬁu][ +2C ‘IHZZ'(’J”_?D a (n+l)z~(n+l):|}

— Z {H"Ja;y+lzn0+l _(n_+_ I)HnJar,;+12[)—n+l _Enljaj!+lzov(n+l)
=0

1
+2ﬁjujn+2E,,,a"+zzg”} (30)

where I'; = u;/u. By comparing the coefficients of each power of z,, the explicit results
among the coefficients of the complex potentials are obtained as

So, = —2y,Re[M, la; 3N

-~ uj(BC_OJ ﬁ/EO,/)

S\, = —wa M+ e — Aa; (32)

I

Sn,;» = — [(nZ - 1)5j+a]']ajzn+2MnJ - (n— 1)5/18"*2,/612"

/

2”‘]'BDVI71‘/' 5 2.“'['(ﬁc_nfl,/_ﬁjEn71.j) ni2

_ , > 33
1 + ij (11 (n+ l)(rl-l" K,) a] (n 2) ( )
(1—a)(1—7,3,) (o, —7)(1=9))
H, = M,,+ M, (34)
0/ 1 —a;0; o -9, "

2uj(ﬂcn*1.f—ﬁfE"‘l=j)
(n+)(T;+xy) 7

H, =(1—0)M, + (n>1) (35)

2#jBD-n+ ‘Jai—(2n+2)
(n+1(1+4T %)

_ 2ﬂj(ﬁcn+ IJ_BjEn+ u)af
I +x,

L,,=(1-6)K,,+(n+3)o;—0,)M,,,,a; +

. (nz0) (36)
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- ., 26D,
F,, = —6K,,a"*—(n+3),M,. ,a" "+ #iBDns 1,

Ko j CEREY) (n=0) (37

where «;, J,, y; are material constants for the jth inclusion defined as

x,—Ix 1-T; kK, —1 =T ,(k—1)
= 8= .y, = e 38
X Ti+x, " 7 1+Tx’ " 2+ (k=1 (38)

Actually, there are only two independent combinations of the material moduli which are
relevant, since we have

N ai_al
b= 0=8)—o(1-a) (39)

The remaining two unknown coefficients M, ;, K,, which appeared in eqns (31)-(37) could
be obtained as the specific geometry and loading conditions of the problem are given.
Equations (26)—(28) and eqns (31)—(37) now constitute the general expressions of the
complex potentials in plane thermoelasticity which satisfy the continuity conditions for
each circular inclusion. Note that the present expressions as described above can be directly
reduced to the results of the thermoelastic probiem associated with a single inclusion
obtained by Chao and Shen (1995) and the isothermal elasticity problem associated with
multiple inclusions obtained by Gong and Meguid (1993).

For the thermoelastic problem with an arbitrary array of N circular inclusions, the
Airy’ stress function in the matrix can be represented as

N
U=Uy+ Y U (40)
k=1

where U, represents the Airy” stress function corresponding to the homogeneous problem
under the uniform stress state at infinity, i.e.

L'o = Re |:fj¢0(2j) + J“I/O(Z]) dZ,:| (41)
with
o = Hor +07)z, (42)

Since no mechanical loading is considered in the present study, i.e. 67 =¢; =13, =0, it
gives ¢ = W, = U, = 0. The Airy’s stress functions U,, which contains singularities inside
the kth inclusion, are expressed as

U, = Re[2:4(z,) + [¥(z,) dz,] (44)
where
)= ¥ Fuzi™ (45)

Y) = Y Szl (46)
n=0
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Substituting eqn (21) into eqn (44), the stress functions corresponding to eqn (40) can be
rearranged as

#(z)) = Z M, 2%+ F,z, "] 47
‘//("]) = Z [Kn ?H-l Sn,jz_;(n+1)] (48)
where
x N
Zoé aFop (49)
P= J
x€* N
; Z;, A+bﬁpr,k) (50)
with
—1)y+? 2
G )—“)CT; )"”"W’w’“ (51)
ik

Equations (31)-(33), (37) and eqns (49)— (50) constitute the necessary conditions for deter-
mining the unknown coefficients M, ,, F, ,, K,; and S, which will be solved successively by
applying the perturbation technique. The coefficients H,; and L, for the jth inclusion can
then be determined through eqns (34)-(36). The thermoelastic problem of an infinitely
extended matrix containing any number of arbitrarily located inclusions is thus solved.

5. RESULTS AND DISCUSSIONS

All the coefficients C,,, D, ,and M, , F, . K, , S,;(n =0,1,2,...;j=1,2,...) appeared
in eqn (22) and eqns (47)— (48) respectively, are solved successively in a Appendix by using
a perturbation technique [Gong and Meguid (1993)]. In the present study, our attention
will be focused on the change in the interfacial stresses at point A (see Fig. 3) around the
first inclusion (j = 1) due to the presence of the second inclusion (j = 2). After having all

(Circular hole or
rigid circular inclusion)

Fig. 3. A circular hole or a rigid circular inclusion interacting with an elastic inclusion.



Circular inclusions in plane thermoelasticity 1881

the unknown coefficients, the stress complex potential in the matrix can be expressed as a
series form

x

D(z) =¢'(z) = Y IO (z)) (52)
¥() =0() = T AP0 (53)

where 4 is a perturbation parameter defined as a,/d,,. Note that an approximate closed
form solution in eqns (52) and (53) may be achieved since the stress functions ®(z,),
Y(z) can be determined successively to as many terms as required. When the two
inclusions are sufficiently apart, the leading order terms of the series solution will provide
an asymptotic solution to the given problem. In the following analysis, the solution up to
the order of A*is obtained explicitly as follows:

; —2uBk—k, )
(0) — 2 i, —1
D% (2) T+x (——-k+kl)ra, e’z (54)
=2uBk—k, . 2uB (k—k, Hi 2k
0) — Ty 2 -0y 1 _
YoE =70 <k+k,>w‘e z 2[1-}-1( el R o Ul sl
tealz™? (55)
V) =¥"(2)=0 (56)
Zﬂ,ﬁ k"‘k] k—k2 a; 2 . oy
@(2) — et 2 4120137 51
(z) l+x(k+k,><k+kl a, ta e z (57

2up (k—k\\(k—k,\(a,\ .
) - =2 2 i —201) 5|
@ 1+x(k+k,><k+k2 a) T

2uf (k—k\(k—k, U 2%k k—ky\/a,\2 ‘ o
2 - — 4 ai(20)5—7) 3
+ [1+K<k+k1)(k+k2 + T, +x, B k+k, B +k ) \a, 1a, € z

(38)

2upo, (k—ky\(a,\' #20 2k a\*
B3y = 2 | P71 %2 _ =
*7E) 2|:1+K(k+k2)<a,> +F2+x2 Z k+k, b a,
ulﬁ k—kl k_kl a, : {392 —7) 43.,-2
* 1+F1x<k+kl><k+k2 a) ¢ @z (9)
2uB (k—k, 253 2k a\! iy —
3) =2 — < i(y—3¢13)
¥ |:1+x<k+k2>+ i\ e ) e ) e
5 6ups, (k—k,\(a, 4+ 3,0, g 2k 8, a ¢
1+x \k+k, J\a, I, +x, k+k, a,
+ 3/1]ﬁ k—kl k_k2 2 2+ 12 k—'kz ﬁ— 2k BI
1+, k\k+k, J\k+k, J\a, I +x, \k+k, k+k,

2
a, i N
X (—) ]mf AT T (60)
a
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=2uBlk—k\\N (k—k,\/a,\ N
(D(4) — il 2 IWZ*]
@=Ti« <k+k, k+i, \a, ) “€
. 4 2k 4
) 6upo, (k—k, ar " 3u20, B 8, ax
1+x \k+k, /\a, I, +x, k+k, a;
ll]ﬁ k_kl k—kZ a, : 4 i(4p,—7) o~ 3
—= R 1
+ 1+1“.x(k+k1)<k+k2 a ) A€ 61)
—2uB(k—k\ N (k—k,\[a>\’
(4) _ “2 2 i1
() 1+K(k+k1> ik \a, taje "z
2#ﬁ k—kz H2 2k a; ¢ iy —49,,)
+6|:1+K<k+k2>+ I'+x, - k+k2ﬁ2 a, e z
s 2up (k—k\\° (k—k, N k—k\[(k—k, Hy
1+x\k+k, | \k+k, k+k, \k+k, T, +x,
2k a, ’ 4 v —3
oo e
24uBd, [k—k, 4 12u,0 2k 4
5 uﬁ‘x 2\(az) | 12000 (0 8, )%
l+x \k+k; /\a, I'.+k, k+k, a,
4B (k= \(k—k:\(@ ¥ | 2k
+l+1",;<<k-+—kl ik N\a ) TE e\ P

k—ki\(a, ’ 6 4@ 0 —3) 03
— Az, 2
X <k+k2><a1> ]ral e (62)

It is to be noted that the stress potentials corresponding to the zero-order of 4 in eqns
(54) and (55) represent the solutions for a single circular inclusion which are found to agree
with the exact results given by Chao and Shen (1995) based upon the method of analytical
continuation. The stress potentials in eqns (56)—(62) corresponding to the higher-order
terms of the series solution account for the interaction effects between the two inclusions.
In the following discussion, we consider either a circular hole or a rigid circular inclusion
interacting with an elastic inclusion under a remote uniform heat flux directed from the
negative x;-axis (see Fig. 3). A plane strain condition with v=v, =v,=0.3 and a, = a,
are assumed and the perturbation parameter A is set to be 0.25 which ensures the good
accuracy of the present fourth-order solution.

5.1. A circular hole interacting with an elastic inclusion

As our first example, we consider an insulated circular hole (I', = §, = k; = 0) inter-
acting with an elastic inclusion (j = 2) as shown in Fig. 3. The elastic inclusion is located
within the distance d;,/a, = 4 away from a circular hole for the relative inclination ¢,
ranging from 0° to 180°. Figures 4-6 display the dependence of the normalized hoop stress
at point A upon the material constants for different inclinations of an elastic inclusion
relative to a circular hole. The effect of the shear modulus of an elastic inclusion upon the
hoop stress at point 4, when k,/k = 2, ./ = 1, can be observed from Fig. 4. It shows that
the hoop stress attains the maximum increase or decrease when a circular elastic inclusion
becomes a hole (I', = 0) for a given relative inclination. This implies that a hole acts as a
shield or an antishield depending upon the relative inclination. The effect of the heat
conductivity of an elastic inclusion on the hoop stress, when I', = 5, f,/f = 1, is depicted
in Fig. 5. The result shows that the two extreme cases of an insulated inclusion (k,/k = 0)
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Fig. 4. Variation of hoop stress at point 4 with I'; and ¢, (k;/k = 2,8,/ = 1).
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Fig. 5. Variation of hoop stress at point 4 with k,/k and ¢, (T; = 5, 8,/ = 1).
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Fig. 6. Variation of hoop stress at point A4 with §,/8 and o@,, (I', = 2, k,/k = 1).

and a fully conductive inclusion (k,/k = o0) provide the maximum increase or decrease in
the hoop stress at point 4 for a given relative inclination. The influence of the thermal
expansion coefficient of an elastic inclusion on the hoop stress at point A, when I';, = 2,
k,/k =1, can be seen from Fig. 6. It concludes that increasing the thermal expansion
coeflicient 5,/ of an elastic inclusion may result in an increase of the maximum hoop stress
or a decrease of the minimum hoop stress at point 4 depending on a relative inclination. It
is interesting to note that, as shown in Figs 5 and 6, the hoop stress at point 4 will not be
affected by the presence of an elastic inclusion when both the heat conductivity and the
thermal expansion coefficient of an elastic inclusion are identical to those of the matrix, i.e.
ki/k = f,/B = 1. The above conclusion can be further justified by the expression of

2k
K2 <.B— k+ ks Bz)

as indicated in eqns (59)—(62) which is found to vanish for k,/k = ./ = 1 regardless of
the value of u,.

5.2. A rigid circular inclusion interacting with an elastic inclusion

As our second example, the inclusion (j = 1) is assumed to be rigid and unconductive,
i.e. [’y = o0, k, = B, = 0 and an elastic inclusion is located away from a rigid inclusion with
the distance d),/a, = 4. The effect of the shear modulus of an elastic inclusion upon the
interfacial stresses at point 4, when k,/k is fixed at 2 and B,/f is kept at 1, is displayed in
Fig. 7(a—c). It can be observed that the interfacial stresses at point 4 may be increased or
decreased depending upon the relative position of an elastic inclusion. The positive tan-
gential stress attains the maximum increase when a rigid inclusion (I', = oc) is placed
behind the rigid inclusion (j = 1) with ¢,, = 0° as indicated in Fig. 7(a). On the other hand,
the negative radial stress is enhanced as a circular hole (I', = 0) is located at ¢, = 50°
relative to the rigid inclusion (see Fig. 7(b)). The interfacial shear stress, depicted in Fig.
7(c), is found to change sign as an elastic inclusion moves from ¢,, = 0° to ¢, = 180°.
Variations of the interfacial stresses with different values of the heat conductivity of an
elastic inclusion are displayed in Fig. 8(a-—c). The results indicate that, similar to the hoop
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Fig. 7. (a) Variation of interfacial tangential stress at point 4 with I'; and @, (kyjk = 2,8,/ = 1),
(b) variation of interfacial radial stress at point A4 with ', and ¢, (ko/k = 2, B2/f = 1), (c) variation
of interfacial shear stress at point A with I', and ¢, (ko/k = 2, Bo/B = 1). (Continued overleaf’)
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(b) variation of interfacial radial stress at point 4 with k,/k and ¢, (T, = 5, 8,/ = 1), (c) variation
of interfacial shear stress at point 4 with k;/k and @, (T, = 5, B2/ = 1). (Continued overleaf’)
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stress in Fig. 5, the maximum increase or decrease in the interfacial stresses is provided for
the two extreme cases of an insulated inclusion (k,/k = 0) and a fully conductible inclusion
(ky/k = oc). The effect of the thermal expansion coeflicient of an elastic inclusion upon the
interfacial stresses can be observed in Fig. 9(a—c). Similar to the hoop stress in Fig. 6,
increasing of the thermal expansion coefficient of an elastic inclusion will be accompanied
by an increase of the maximum interfacial stresses or a decrease of the minimum interfacial
stresses for a given relative inclination. Note that, when a uniform heat flux is approached
from the negative x-axis, all the positive tangential stress and the negative radial stress
always prevail at point 4 regardless of the material constants and the relative position of
an elastic inclusion. Furthermore, the interfacial stresses around the rigid inclusion, similar
to the hoop stress discussed previously, will not be influenced by the presence of an elastic
inclusion as the heat conductivity and the thermal expansion coefficient of an elastic
inclusion are the same as those of the matrix.

6. CONCLUSIONS

A general series solution to the thermoelastic multiple inclusion problem is presented
via the application of the complex variable theory, the use of the Laurent series expansion
and the use of the superposition principle. An approximate closed form solution for the
problem of an infinitely extended matrix containing two inclusions is obtained explicitly.
Two extreme cases of a circular hole and a rigid circular inclusion interacting with an elastic
inclusion are considered. The numerical results of the hoop stress or interfacial stresses at
the particular point along the disc are provided in graphic form. Note that the hoop and
interfacial stresses along the whole circumference of the disc, not just at the point 4, can
be also obtained from the present approach. It should be emphasized that the series solution
presented in this paper can be derived successively to as many terms as required for the
problem that the two inclusions become infinitely close.
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APPENDIX

All the unknown coefficients appeared in eqns (14). (26) and (27) are expressed as power series of /4 (« = a,/d,3)
such that
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Substituting the above equations into eqns (18), (23). (31), (32), (33). (37), (49) and (50), we have the following
relationships expressed as
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